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A note on slow vibrations in a viscous fluid 

By W. E. WILLIAMS 
Department of Mathematics, Battersee College of Technology, London, S.W.11 

(Received 22 January 1966) 

An approximate expression is obtained for the force on an arbitrary body 
executing slow vibrations in a viscous fluid. 

1. Introduction 
This note is concerned with the determination of the force on a slowly vibrating 

body in a viscous fluid. The problem is a generalization of one examined by 
Kanwal (1964), who considered the particular case of an axisymmetric body 
vibrating along its axis of symmetry. Kanwal asserts that his expressions for 
the force are correct for arbitrary bodies; it will, however, be shown that this 
assertion is not generally valid. 

The method employed is an integral-equation one closely allied to that used by 
the author (Williams 1966) in treating boundary effects in steady Stokes flow. 

2. Detailed formulation and solution of the problem 
It will be assumed that the body oscillates about some mean position with 

velocity Ue%, where i is a unit vector, and throughout the work dimensionless 
space co-ordinates based on a typical dimension u of the body S will be used. The 
time-dependent Stokes flow equations may be written in the form (the exponential 
time factor will be suppressed through the work) 

iM2q = - gradp + V2q, div q = 0, (1) 
where q = q'lU, p = up'IpU, H2 = dwp/p,  

p is the density, p the viscosity and q' and p' denote the velocity and pressure 
expressed in physical units. 

The first step is to obtain an appropriate integral representation for q; such 
a representation may be obtained by an immediate extension of the known 
results for steady Stokes flow (Williams 1966). It follows immediately that the 
value of q at a point P in the region exterior to S is given by 

q = -Ss(f .T-q.  r:-pn)}d8, 

where f = aq/& -pn and n denotes the unit vector along the outward normal to S. 
The tensor T and the vector p are solutions of the equations 

iM2T = -gradp+V2T+U8(r-r,), d ivT = 0, (3) 
where U is the unit tensor, ro denotes an arbitrary point on rS and r denotes the 
position vector of P. The tensor T is also required to tend to zero as Ir - r,J + m. 
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The solution of equations (3) is clearly 

T = UV2$ - gradgrad $, 
(V2 - iM2) V2$ = - 6(r - ro), (4) 

p = -grad (V2 - iM2) $, 
where 

and the appropriate solution of equation (4) is 

$ = (1 -exp { -  k Ir - r,,l})/(4nkz Ir - rol), 

where k = (1 + i) M /  $2. For small M 

where 

body is given by 

T = To-kU/6n+O(M2), ( 5 )  
To = (UV2 jr - rol -gradgrad lr - r0/)/8n. 

From the definition of the stress tensor it can be shown that the force F on the 

(6) F = JfdS. 

The integral equation governing the motion is obtained by taking P in 
equation (2) to be on X and setting q = i on X. As q is constant on S it may be 
taken outside the integral in equation ( 2 )  and it may be shown from equations (3) 
and Green’s theorem that 

/ s (g-pn)dS=iM2/  V TdV, (7) 

where V denotes the interior of S. Equations ( Z ) ,  ( 5 ) ,  (6) and (7) thus give, for 
P on S ,  

When k = 0 the integral equation (8) reduces to that for steady Stokes flow and 
thus if the Stokes resistance tensor @, defined to be such that the force exerted 
on a body moving with uniform velocity u is 0 . U, is introduced it follows that 
the force on the body is 

i-kFl6r = -fTo.fdS+O(M2). (8) 

F = @ .{i- (1 +i) H(*. i)/67r .J2}+O(M2).  (9) 

For a body moving parallel to one of its principal axes of resistance (i.e. those 
directions such that 0 .  u is of the form - Du) equation (9) becomes 

F = - D(1 + (1 + i) MD/6n 421 i. (10) 

On reverting to physical units equation (10) reduces to the form derived by 
Kanwal (1964). Kanwal’s general result is that the drag on the body is given by 
the magnitude of the right-hand side of (10) where D is interpreted as the drag in 
Stokes flow. Clearly this is not true in general for arbitrary motion of a general 
body, as can be seen by considering the particular case of a circular disk moving at 
an angle CL to its axis of symmetry. Equation (9) gives 

F = -+‘cos 01 iz( 1 + 8( 1 + i)/9n 4 2 )  - 3$sin a il( 1 + 16( 1 + i) N/9n 4 2 ) ,  

where i, is a unit vector along the axis of symmetry and i, is a unit vector in the 
plane of the disk and of the direction of motion. 
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